ANIMA  4.0
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 12345]
 Canima::Graph< captype, tcaptype, flowtype >::arc
 Carguments
 Canima::B1GammaDistributionIntegrandIntegrand to compute the internal integral per distribution in B1GammaMixtureT2RelaxometryCostFunction
 Canima::B1GMMDistributionIntegrandIntegrand to compute the internal integral per distribution in B1GMMRelaxometryCostFunction
 Canima::BaseBlockMatcher< TInputImageType >
 Canima::BaseRootFindingAlgorithm
 Canima::BaseTransformAgregator< NDimensions >
 Canima::Block< Type >
 Canima::Block< node_id >
 Canima::BlockMatchingInitializer< PixelType, NDimensions >::BlockGeneratorThreadStruct
 Canima::CholeskyDecompositionCholesky decomposition: decomposes a symmetric matrix A in the form L D L^T, where L is lower triangular and D diagonal. May be used to solve efficiently any linear system using the solve methods. Refer to Gill, Golub et al. Methods for modifying matrix factorizations. 1974
 Canima::NLOPTParametersConstraintFunction::ConstraintDataType
 Canima::DawsonIntegrand
 Canima::DBlock< Type >
 Canima::DBlock< anima::Graph::nodeptr >
 Canima::EPGSignalSimulator
 Canima::errors_pair_comparator
 Canima::BaseProbabilisticTractographyImageFilter< TInputModelImageType >::FiberWorkType
 Canima::FuzzyCMeansFilter< ScalarType >
 Canima::FuzzyCMeansFilter< double >
 Canima::GaussLaguerreQuadratureComputes the Gauss Laguerre quadrature of a function defined from R^+ into R. Recenters the function on the interest zone with an affine relation, then uses Gauss Legendre on the left out part of the function and computes the main part with Gauss Laguerre
 Canima::GradientFileReader< GradientType, BValueScalarType >
 Canima::Graph< captype, tcaptype, flowtype >
 Canima::ImageDataSplitter< TInputImage >
 CImageToImageFilter
 CImageToImageMetric
 CInPlaceImageFilter
 CIntegrandType
 CInterpolateImageFunction
 Canima::KMeansFilter< DataType, PointDimension >
 Canima::KummerIntegrand
 CLabelSetMeasuresMetrics stored per label
 CLightObject
 Canima::LowMemoryLocalPatchCovarianceDistanceBridge
 Canima::LowMemoryLocalPatchMeanDistanceBridge
 Canima::LowMemoryNLMeansPatientToGroupComparisonBridge
 Canima::LowMemoryPatientToGroupComparisonBridge
 Canima::LowMemoryPatientToGroupODFComparisonBridge
 Canima::MatrixLoggerFilter< TInputScalarType, TOutputScalarType, NDimensions, NDegreesOfFreedom >Class to compute many log-vectors in a multi-threaded way
 CMatrixOffsetTransformBase
 Canima::MCMFileReader< PixelType, ImageDimension >
 Canima::MCMFileWriter< PixelType, ImageDimension >
 Canima::MultiCompartmentModelCreatorReally this class is some simplified factory that creates the MCM that it knows
 CMultipleValuedCostFunction
 CMultipleValuedNonLinearOptimizer
 Canima::Graph< captype, tcaptype, flowtype >::node
 Canima::Graph< captype, tcaptype, flowtype >::nodeptr
 Canima::NonLocalPatchBaseSearcher< ImageType >
 Canima::NonLocalPatchBaseSearcher< itk::VectorImage< ImageScalarType, DataImageType::ImageDimension > >
 CObject
 Canima::ODFSphericalHarmonicBasis
 Canima::DTIEstimationImageFilter< InputPixelScalarType, OutputPixelScalarType >::OptimizationDataStructure
 COptimizer
 Canima::BlockMatchingInitializer< PixelType, NDimensions >::pair_comparator
 Canima::BaseProbabilisticTractographyImageFilter< TInputModelImageType >::pair_comparator
 Canima::pair_decreasing_comparator
 Canima::pair_increasing_comparator
 CProcessObject
 Canima::RootFindingFunctionBoostBridge
 Canima::RootToleranceBoostBridge
 Canima::NLMeansPatientToGroupComparisonImageFilter< PixelScalarType >::SampleIdentifier
 Canima::SegPerfAppMain class to structure application and handle command line options
 Canima::SegPerfCAnalyzerClass to compute various metrics to evaluate segmentation results
 Canima::SegPerfLabelSetMeasures
 Canima::SegPerfResultsClass to format and saves results
 Canima::ShapesReader
 Canima::ShapesWriter
 CSingleValuedCostFunction
 CSingleValuedNonLinearOptimizer
 Canima::SpectralClusteringFilter< ScalarType >Provides an implementation of spectral clustering, as proposed in A.Y. Ng, M.I. Jordan and Y. Weiss. "On Spectral Clustering: Analysis and an Algorithm." Advances in Neural Information Processing Systems 14. 2001
 Canima::SpectralClusteringFilter< double >
 Canima::SphericalHarmonic
 Canima::MatrixLoggerFilter< TInputScalarType, TOutputScalarType, NDimensions, NDegreesOfFreedom >::ThreadedLogData
 Canima::BaseBlockMatcher< TInputImageType >::ThreadedMatchData
 CThreaderArguments
 Canima::BaseTractographyImageFilter::trackerArguments
 Canima::BaseProbabilisticTractographyImageFilter< TInputModelImageType >::trackerArguments
 Canima::TransformSeriesReader< TScalarType, NDimensions >::TransformInformation
 Canima::TransformSeriesReader< TScalarType, NDimensions >
 CVectorImage
 Canima::ODFProbabilisticTractographyImageFilter::XYZ