ANIMA  4.0
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | List of all members
anima::B1GammaMixtureT2RelaxometryCostFunction Class Reference

#include <animaB1GammaMixtureT2RelaxometryCostFunction.h>

+ Inheritance diagram for anima::B1GammaMixtureT2RelaxometryCostFunction:
+ Collaboration diagram for anima::B1GammaMixtureT2RelaxometryCostFunction:

Public Types

typedef itk::SmartPointer< const SelfConstPointer
 
typedef Superclass::DerivativeType DerivativeType
 
using LECalculatorPointer = LECalculatorType::Pointer
 
using LECalculatorType = anima::LogEuclideanTensorCalculator< double >
 
typedef vnl_matrix< double > MatrixType
 
typedef Superclass::MeasureType MeasureType
 
typedef Superclass::ParametersType ParametersType
 
typedef itk::SmartPointer< SelfPointer
 
typedef B1GammaMixtureT2RelaxometryCostFunction Self
 
typedef SingleValuedCostFunction Superclass
 

Public Member Functions

virtual ::itk::LightObject::Pointer CreateAnother (void) const
 
virtual void GetDerivative (const ParametersType &parameters, DerivativeType &derivative) const ITK_OVERRIDE
 
virtual const char * GetNameOfClass () const
 
unsigned int GetNumberOfParameters () const ITK_OVERRIDE
 
ParametersTypeGetOptimalT2Weights ()
 
virtual double GetSigmaSquare ()
 
virtual MeasureType GetValue (const ParametersType &parameters) const ITK_OVERRIDE
 
virtual void SetConstrainedParameters (bool _arg)
 
virtual void SetEchoSpacing (double _arg)
 
virtual void SetExcitationFlipAngle (double _arg)
 
virtual void SetGammaIntegralTolerance (double _arg)
 
void SetGammaMeans (std::vector< double > &val)
 
void SetGammaVariances (std::vector< double > &val)
 
virtual void SetT1Value (double _arg)
 
void SetT2RelaxometrySignals (ParametersType &relaxoSignals)
 

Static Public Member Functions

static Pointer New ()
 

Protected Member Functions

 B1GammaMixtureT2RelaxometryCostFunction ()
 
void PrepareDataForDerivative () const
 
void PrepareDataForLLS () const
 
void SolveLinearLeastSquares () const
 Computes maximum likelihood estimates of weights. More...
 
virtual ~B1GammaMixtureT2RelaxometryCostFunction ()
 

Detailed Description

Definition at line 17 of file animaB1GammaMixtureT2RelaxometryCostFunction.h.

Member Typedef Documentation

◆ ConstPointer

◆ DerivativeType

◆ LECalculatorPointer

◆ LECalculatorType

◆ MatrixType

◆ MeasureType

◆ ParametersType

◆ Pointer

◆ Self

Standard class typedefs.

Definition at line 22 of file animaB1GammaMixtureT2RelaxometryCostFunction.h.

◆ Superclass

Constructor & Destructor Documentation

◆ B1GammaMixtureT2RelaxometryCostFunction()

anima::B1GammaMixtureT2RelaxometryCostFunction::B1GammaMixtureT2RelaxometryCostFunction ( )
inlineprotected

◆ ~B1GammaMixtureT2RelaxometryCostFunction()

virtual anima::B1GammaMixtureT2RelaxometryCostFunction::~B1GammaMixtureT2RelaxometryCostFunction ( )
inlineprotectedvirtual

Member Function Documentation

◆ CreateAnother()

virtual::itk::LightObject::Pointer anima::B1GammaMixtureT2RelaxometryCostFunction::CreateAnother ( void  ) const

◆ GetDerivative()

void anima::B1GammaMixtureT2RelaxometryCostFunction::GetDerivative ( const ParametersType parameters,
DerivativeType derivative 
) const
virtual

◆ GetNameOfClass()

virtual const char* anima::B1GammaMixtureT2RelaxometryCostFunction::GetNameOfClass ( ) const
virtual

Run-time type information (and related methods).

◆ GetNumberOfParameters()

unsigned int anima::B1GammaMixtureT2RelaxometryCostFunction::GetNumberOfParameters ( ) const
inline

◆ GetOptimalT2Weights()

ParametersType& anima::B1GammaMixtureT2RelaxometryCostFunction::GetOptimalT2Weights ( )
inline

◆ GetSigmaSquare()

virtual double anima::B1GammaMixtureT2RelaxometryCostFunction::GetSigmaSquare ( )
virtual

◆ GetValue()

B1GammaMixtureT2RelaxometryCostFunction::MeasureType anima::B1GammaMixtureT2RelaxometryCostFunction::GetValue ( const ParametersType parameters) const
virtual

The measure type shall be used for computing the cost function value to observe convergence Parameters are set as {flip_angle,theta_1,theta_2,theta_3} for unconstrained estimation Or {flip_angle,theta_2} for constrained

Definition at line 12 of file animaB1GammaMixtureT2RelaxometryCostFunction.cxx.

References GetNumberOfParameters(), PrepareDataForLLS(), and SolveLinearLeastSquares().

◆ New()

static Pointer anima::B1GammaMixtureT2RelaxometryCostFunction::New ( )
static

◆ PrepareDataForDerivative()

void anima::B1GammaMixtureT2RelaxometryCostFunction::PrepareDataForDerivative ( ) const
protected

◆ PrepareDataForLLS()

void anima::B1GammaMixtureT2RelaxometryCostFunction::PrepareDataForLLS ( ) const
protected

◆ SetConstrainedParameters()

virtual void anima::B1GammaMixtureT2RelaxometryCostFunction::SetConstrainedParameters ( bool  _arg)
virtual

◆ SetEchoSpacing()

virtual void anima::B1GammaMixtureT2RelaxometryCostFunction::SetEchoSpacing ( double  _arg)
virtual

◆ SetExcitationFlipAngle()

virtual void anima::B1GammaMixtureT2RelaxometryCostFunction::SetExcitationFlipAngle ( double  _arg)
virtual

◆ SetGammaIntegralTolerance()

virtual void anima::B1GammaMixtureT2RelaxometryCostFunction::SetGammaIntegralTolerance ( double  _arg)
virtual

◆ SetGammaMeans()

void anima::B1GammaMixtureT2RelaxometryCostFunction::SetGammaMeans ( std::vector< double > &  val)
inline

◆ SetGammaVariances()

void anima::B1GammaMixtureT2RelaxometryCostFunction::SetGammaVariances ( std::vector< double > &  val)
inline

◆ SetT1Value()

virtual void anima::B1GammaMixtureT2RelaxometryCostFunction::SetT1Value ( double  _arg)
virtual

◆ SetT2RelaxometrySignals()

void anima::B1GammaMixtureT2RelaxometryCostFunction::SetT2RelaxometrySignals ( ParametersType relaxoSignals)
inline

◆ SolveLinearLeastSquares()

void anima::B1GammaMixtureT2RelaxometryCostFunction::SolveLinearLeastSquares ( ) const
protected

Computes maximum likelihood estimates of weights.

Definition at line 140 of file animaB1GammaMixtureT2RelaxometryCostFunction.cxx.

Referenced by GetValue().


The documentation for this class was generated from the following files: